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1. Introduction

Since the seminal work of ’t Hooft [1] it has been widely believed that large N SU(N)

gauge theories (with adjoint matter fields) should have a dual description in terms of

closed strings. Any correlator M in a gauge theory has the following expansion

M =

∞
∑

g=0

F̃g(λ)N2−2g, (1.1)

where λ = g2
YMN is the ’t Hooft coupling. This expansion has the same structure as a

closed string perturbation theory with gs ∼ 1/N . Of course by now we have many examples

of this duality, the AdS/CFT correspondence [2] and the geometric transition [3, 4] being

the most widely studied in recent years. However, an interesting question, still remaining

open, is how to build a concrete string theory dual for a given field theory.

In principle, a way to construct a string dual for a given theory is to know the dual of a

free field theory and then to turn on non-zero couplings. In case of gauge theories in D < 1

this program can be pursued in some sense. The free (Gaussian) D = 0 matrix model is

related to a c = −2 matter coupled to Liouville theory [5, 6], or equivalently to the 2d

topological gravity [7 – 10]. The other critical matrix models can be obtained by turning
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on certain perturbations (see [11, 12] for reviews on the subject). However, in dimensions

higher than 1 this kind of relation has not been constructed yet.1

A very interesting prescription for constructing a stringy dual of a free field theory was

proposed by Rajesh Gopakumar [18, 19] (the proposal was further investigated in [20 – 24]).

The basic ingredient for building the duality in Gopakumar’s proposal is the well known

isomorphism [25] between the moduli space of Riemann surfaces and the space of metric

graphs. This isomorphism has already appeared in many string theory contexts, like string

field theory [26] and different matrix models (the Penner model [27] and the Kontsevich

model [28] are the standard examples, see also [29] for a recent review).

The basic idea of Gopakumar’s prescription is to think of every Feynman graph con-

tributing to a given correlator as a metric graph, with the metric given by the Schwinger

parameters. Then, the integration over the Schwinger parameters is mapped to an inte-

gration over the moduli space of Riemann surfaces and the integrand is interpreted as a

worldsheet CFT correlator.

Using Gopakumar’s prescription one can compute several simple correlators [21, 22].

These computations give rise to some interesting questions about the prescription. Namely,

there are global symmetries of the gauge theory not realized globally on the worldsheet

and some of the CFT correlators localize on sub-manifolds of the moduli space of Riemann

surfaces. These issues can be traced to choosing the metric on the Feynman graphs to be

defined through the Schwinger parameters. An important question is whether there are

different, and yet interesting, choices of the metric.

In this paper we investigate a certain change of the metric assignment to the Feynman

graphs, a choice which does not involve the use of Schwinger parameters. We will see in

what follows that this choice of the metric ties Gopakumar’s prescription closer to the much

studied cases of the matrix models. In particular we will make an attempt to explicitly

construct a worldsheet dual of the Gaussian matrix model.

The rest of the paper is organized as follows. In section 2 we discuss the different

issues arising from Gopakumar’s prescription. In section 3 we introduce an alternative

prescription to define a metric on the Feynman graphs. In section 4 a worldsheet model

for the Gaussian matrix model is built based on the alternative prescription. In section 5

we discuss our results.

2. Gopakumar’s prescription with Schwinger parameters

Let us begin by briefly reviewing the essentials of Gopakumar’s prescription [19] (a detailed

review of the prescription can be also found in [21]). For simplicity we discuss a free gauge

theory in D dimensions containing a single scalar field Q in the adjoint representation of

the gauge group. A generic correlator of gauge invariant operators in this theory has the

following form (again for simplicity we discuss only single trace operators)

〈
s
∏

k=1

TrQJk(xk)〉. (2.1)

1See for instance [13 – 17] for different approaches to the problem.
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The above correlator is computed by the different Wick contraction in the free theory.

Each Feynman diagram is simply a product of free propagators

s
∏

i,j=1

P (|xi − xj|)Mij . (2.2)

Here P (|xi − xj|) is the free propagator and Mij is the number of the different Wick

contraction of operators i and j. Note that in D > 1 the product is also restricted to

i 6= j by normal ordering. However, in matrix models the self contractions are allowed and

this restriction is lifted. A particular way to transform each Feynman graph to a metric

graph utilized by Gopakumar [19] is to endow each propagator with a length parameter by

representing the propagators in the following way

P (|xi − xj|) =

∫ ∞

0
dσ e

− 1
P (|xi−xj |)

σ
, (2.3)

which is simply a variant of the Schwinger parametrization of the propagator.2 Then, a

contribution from a specific Feynman graph to a correlator is given by

s
∏

i,j=1

P (|xi − xj |)Mij ∼
∫ ∞

0

s
∏

i,j=1

∏

k

dσ
(k)
ij e

− 1
P (|xi−xj |)

σ
(k)
ij , (2.4)

where k counts the different propagators connecting given two operators and Mij is the

number of these propagators. An important step in the prescription is to transform the

above integral over the Schwinger parameters σ
(k)
ij to an integral over a reduced set of

parameters σ̄
(k̄)
ij . The reduced set of propagators is defined by gluing together homotopically

equivalent propagators. After this gluing the expression (2.4) can be rewritten as

∫ ∞

0

s
∏

i,j=1

∏

k̄

dσ̄
(k̄)
ij

(

σ̄
(k̄)
ij

)m
(k̄)
ij −1

e
− 1
P (|xi−xj |)

σ̄
(k̄)
ij ( ≡ A ), (2.5)

where k̄ counts homotopically inequivalent propagators connecting two operators. The

parameters m
(k̄)
ij are the numbers of homotopically equivalent propagators glued together,

and satisfy
∑

k̄

m
(k̄)
ij = Mij .

After following the above steps we have transformed a Feynman diagram to a metric graph

which we will refer to as a skeleton graph. There are two parameters associated with each

edge, a Schwinger parameter σ̄
(k̄)
ij which defines the metric on the graph, and an additional

integer parameter m
(k̄)
ij .

The prescription then utilizes Strebel’s theorem [25, 30, 31] (see appendix A for a very

brief introduction to Strebel differentials) to rewrite the expression (2.5) as an integral over

2Of course there are many similar choices of Schwinger parametrization. The original prescription of [19]

was written in the momentum space.
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the moduli space of punctured Riemann surfacesMg,s,

A =

∫

Mg,s

[dηi] F(ηi, xi,m
(k̄)
ij ), (2.6)

where ηi are the coordinates on the moduli space. We use this theorem as follows. The

dual of the skeleton graph is interpreted as the critical graph of a Strebel differential

defined on a Riemann surface of genus g (where the genus is specified in the obvious way

by the graph) with s punctures.3 Following the theorem, a specific set of lengths of the

edges of the graph, given in Gopakumar’s case by σ̄
(k̄)
ij , is translated to a particular point

in the space Mg,s × R
s
+. One then is in position to translate the integration over σ̄

(k̄)
ij to

integration overMg,s×R
s
+. After explicitly performing the integrals over R

s
+ the integrand,

F(ηi, xi,m
(k̄)
ij ), is interpreted as a 2d CFT correlator defining a putative string dual of our

free gauge theory. The parameters xi are quantum numbers of the CFT operators, and the

numbersm
(k̄)
ij parametrize different Feynman diagrams contributing to a specific correlator.

After defining a prescription to translate field theory correlators to CFT correlators

one can try to compute some specific quantities. Although the above prescription is very

straightforward, it is quite complicated to use in practice. The main difficulty being com-

puting concrete Strebel differentials to explicitly make the transition between the integra-

tion variables. Nevertheless, some simple field theory diagrams can be explicitly translated

to the string theory language [21 – 23]. In what follows we will be interested in specific

issues arising from these simple calculations.

The first issue is the localization of some of the putative CFT correlators obtained via

Gopakumar’s prescription on submanifolds ofMg,s. The reason for this can be understood

as follows. The real dimension ofMg,s × R
s
+ is

6g − 6 + 3s. (2.7)

The number of real parameters coming from a skeleton graph is equal to the number

of edges in that graph. A generic dual skeleton graph will have only 3 valent vertices.

Obviously if we have vertices of a larger valence the number of edges will be reduced (we

do not have vertices of valence 2 as the skeleton does not have homotopically equivalent

edges). In such a graph the number of vertices, v, is related to the number of edges, e, by

3v = 2e. The number of faces of the dual graph is the number of operators s. Then using

the relation 2− 2g = v + s− e we get the number of real parameters in a generic skeleton

graph to be 6g − 6 + 3s, in agreement with (2.7).

However, any correlator might get contribution not just from generic graphs but also

(or only) from non-generic ones, having n > 3 valent vertices in the dual graph. These

diagrams will have less parameters and thus after the change of variables via the Strebel

theorem we will get integrals over submanifolds ofMg,s×R
s
+. For particular diagrams the

integration will be even restricted to submanifolds ofMg,s [21 – 23].

3Note that this identification makes it clear why it is needed to go from Feynman graphs to skeleton

graphs, as the critical curves of the Strebel differentials contain only vertices of valence three or higher. We

will discuss a generalization of this point in what follows.
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M0,4

τ

Figure 1: Examples of localizations on the moduli space. Presented are specific diagrams and the

submanifolds of Mg,s on which these diagrams localize. The Π diagram cross ratio is restricted

to the negative real values. The two point torus diagrams without self contractions localize on

co-dimension one submanifold of M1,2 (which has four real dimensions). Presented above is a set

of possible positions of the second insertion, when the first one is at the corner of the fundamental

domain and the torus modulus τ is generic. These examples are taken from [21].

Although we are not used to deal with CFT correlators which localize on sub-manifolds

of the moduli space, one can think of mechanisms responsible for this fact in an otherwise

well behaved CFT s. One such mechanism was described in [23].

It is amusing that in some cases (in the cases depicted in figure 1, the sphere case but

not the torus one) having the localizations might be a signal that some OPE limits are not

allowed as some of the vertices do not have Wick contraction between them on the field

theory side [23] (for more details on the relation between space-time and worldsheet OPE

consult [32]).

The second issue arising from Gopakumar’s prescription is the realization of the spe-

cial conformal symmetry of the gauge theory on the worldsheet. If we take the free theory

under discussion to be scale invariant (i.e. no mass terms), the theory might also be con-

formal, as it happens for gauge theories in four dimensions. The theory will then posses

a larger symmetry which will include the dilatation transformations and special confor-

mal transformations. The worldsheet operators built via Gopakumar’s prescription will

have well defined dilatation properties and this symmetry will not act on the worldsheet

coordinates. This is easily seen from (2.5) for instance. The dilatation amounts to the

simultaneous rescaling of all the Schwinger parameters by a common factor. This rescaling

means that the corresponding Strebel differential is rescaled. The point on Mg,s defined

by a Strebel differential is not affected by this rescaling and thus the only effect of it is the

overall rescaling of the correlator as expected. On the other hand, the action of the special

conformal transformations is non trivial on the worldsheet. As this action involves the

space time coordinates xi, it will act differently on the different Schwinger parameters and

will change the Strebel differential corresponding to each graph, thus taking us to different

points on Mg,s. This property does not invalidate Gopakumar’s prescription, but makes

any comparison of the obtained results to other approaches to gauge/string duality, like

the standard AdS/CFT approach [2], more difficult.

In the following section we will discuss how a change in the metric associated to the

Feynman graphs can affect the above listed properties.
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3. Mapping graphs to moduli space without Schwingers

To use Strebel theorem to map gauge theory correlators to worldsheet expressions we had

to treat Feynman diagrams as metric graphs. As we described above R. Gopakumar has

suggested to take Schwinger parameters as the metric. Obviously, one has a considerable

amount of freedom in rewriting propagators in terms of Schwinger-like parameters.

As an example consider the following. We could define the Schwinger parameters

directly on the skeleton graph and not on the original Feynman diagrams,

P (|xi − xj|)m
(k̄)
ij =

∫ ∞

0
dσ

(k̄)
ij exp



−
σ

(k̄)
ij

P (|xi − xj|)m
(k̄)
ij



 , (3.1)

and treat the σ parameters appearing here as the metric. The putative string theory ex-

pressions would be altered. The above prescription gives us also a natural way to avoid

localizations. We can define a σ parameter for all possible contractions in the skeleton

graph. If some contraction does not appear in a specific Feynman graph then the corre-

sponding m
(k̄)
ij vanishes and the Schwinger integral integrates to 1. In this way we can

associate a maximal number of Schwinger parameters for each Feynman graph and thus

completely avoid the issue of localizations.4 However, there are at least two problems even

with this prescription. First, as we associate metric parameters coupled to the space-time

coordinates xi the space-time special conformal symmetry still remains a problem. Second,

any relation between space-time and worldhseet OPE naively is lost.

The above example teaches us quite a generic lesson. Avoiding localizations means

having enough parameters on the metric graph to correspond to the real dimension of

Mg,s × R
s and this will make the relation between the space-time OPE and worldsheet

OPE problematic. We do expect such a relation to exist from the standard AdS/CFT

examples [32]. Moreover, for the space-time special conformal transformations not to act

on the worldsheet coordinates the metric parameters on the skeleton graphs should be

decoupled from the space-time coordinates.

In what follows we will describe a prescription which will cure the issue of conformal

invariance but it will come at the price that now all correlators in a putative string dual

to a free gauge theory will localize on a discrete set of points in Mg,s.

The way to restore the space time symmetries is to avoid direct coupling between the

space time variables and the length parameters of the metric graphs as discussed above.

Essentially, there is a natural way to associate a length parameter to an edge of a skeleton

of a Feynman graph without Schwinger parameters. As we saw in the previous section,

any such edge has an integer parameter, its multiplicity m
(k̄)
ij . We can define a metric on

each skeleton graph using these integer parameters. Let us consider a correlator

〈
s
∏

i=1

TrQJi〉. (3.2)

4Of course the above prescription has to be defined more carefully. For instance, a given skeleton can

be a subdiagram of different “maximal” graphs.
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For each Feynman diagram contributing to it we build a skeleton graph as before. For each

edge of the skeleton we specify a length given by its multiplicity, m
(k̄)
ij . The parameters Ji

obviously satisfy

Ji =
∑

k̄, j

m
(k̄)
ij . (3.3)

Thus, we identify the parameters Ji with the circumferences of the Strebel differential

poles. In this way we will map each diagram to a discrete set of points inMg,s. Thus, any

correlator (restricted to a given Riemann surface) in a putative string dual of the above

prescription will get contributions from a set of points in the moduli space.5

To conclude this section we comment on the important issue of turning on the interac-

tions. First, as we will consider correlators of operators with higher dimensions we will get

contributions from more Feynman diagrams and thus more points of the moduli space will

be covered. Essentially, any Strebel differential (up to an unimportant over-all scaling) can

be approximated by a differential with integer edge lengths (see [33] for thorough discussion

of Strebel differentials with integer lengths6). Thus as we increase the dimensions of the

operators one should get contributions from a dense set of points on Mg,s.

After turning on interactions, infinite number of points of the moduli space will con-

tribute. However, here it is not a-priori clear whether the covering will be dense. If the

covering is dense, then the string theory expressions will be discontinuous on the moduli

space (at least for arbitrary small couplings in the gauge theory). At each order of the

perturbative expansion we will have a finite number of points and a value of the integrand

will be proportional to some power of the coupling constants. If the covering is dense then

in any vicinity of a given point infinite number of orders of the perturbative expansion

will contribute. If the couplings are not arbitrarily small then problems might not arise.

However, we will have to understand this issue better if we are to describe weakly coupled

theories, like the limit of small coupling of the N = 4 SYM.

4. Toward a worldsheet theory for the Gaussian matrix model

In this section we will try to gain some understanding of the prescription presented above in

the relatively well understood case of the matrix models. In particular we will consider the

free, Gaussian, model. Much is known about the relation of this model to string theories. In

particular, it is related to the topological gravity [7] and its formulation through Liouville

theory with c = −2 matter [6, 35] (see [36] for reviews). Moreover, there is another matrix

model, the Kontsevich model, which is also related to the topological gravity [28]. In

a modern perspective the Gaussian model is seen to be related to the theory living on

the ZZ branes [37] in the above mentioned Liouville theory and the Kontsevich model

5Note that this prescription retains a very weak relation between the space-time and worldsheet OPEs.

Namely, as in Gopakumar’s original prescription, an absense of some OPE limit in space-time will imply

some restrictions on the possible contributions from different regions of the moduli space.
6See also [34] for a discussion on Strebel differentials with integer lengths in the context of discretized

Moduli spaces of Riemann surfaces and corresponding matrix models.
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describes the string field theory on the FZZT branes [38]. The Kontsevich model can be

obtained through a specific double scaling limit of the loop operator expectation values

in the Gaussian matrix theory [39, 40].7 In what follows we will not explicitly use (or

try to derive) the above connections of the free matrix model to string theory. We will

rather just follow the prescription presented in the previous section to explicitly construct

a worldsheet dual of a free matrix model.

Let us first briefly outline the main steps of the construction appearing in this section.

First (section 4.1), we will use the prescription of the previous section to construct a toy

σ-model which will imitate a string theory structure. The sum over complex structures

will be implemented by a sum over a specific set of Strebel differentials dictated by the

prescription. We will define an action and a set of operators for this toy model. The action

and the operators will be defined in terms of a discrete set of fields associated to the double

poles of the Strebel differentials. This model will be explicitly designed to reproduce the

Gaussian model correlators. In the following sections we will recast this toy model as a

worldsheet theory with an unconventional measure on the moduli space.

4.1 A toy σ-model

We consider a gauge invariant correlator of the following form

〈
s
∏

j=1

TrQJj〉, (4.1)

computed in the Gaussian matrix model with an action given by

SM =
1

2
NTrQ2, (4.2)

where Q is a hermitian N ×N matrix.

This correlator is computed as a sum of the different Wick contractions. It can be

naturally expanded in powers of N . Every loop gives a factor of N , and a propagator gives

N−1. All the vertices are external and do not give any factors of N . Thus the power of N

accompanying each diagram contributing to an s point correltor (4.1) is f − e = 2− 2g− s
(f is the number of loops and e is the number of edges in a given diagram). Thus, a

correlator (4.1) in the free theory can be written as

∑

i

N2−2gi−sCi =

s
∏

k=1

Jk

∞
∏

J=1

vJ !N−s
∑

i

N2−2gi

#(Γi)
, (4.3)

where summation is over different Feynman graphs and Ci is the number of Wick contrac-

tions giving each graph (for instance see [27]). vJ is the number of vertices of power J .

gi is th genus and the factor #(Γi) is the symmetry factor of the ith Feynman graph (we

identify the graphs by mapping the set of vertices and the set of edges onto themselves

keeping the orientation of the vertices fixed).

7See also [41] for yet another connection between the Kontsevich model and the Gaussian theory.
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In order to construct a two dimensional model reproducing the field theory result we

have to do essentially two things. We have to construct an action and map the field theory

operators to vertex operators in the toy σ-model. We will have a considerable amount

of freedom by trading between quantities which will go to the definition of the vertex

operators and to the action. We first construct a model with the simplest action and then

use the above mentioned freedom to rewrite the expressions in a more familiar way.

Let us first remind ourselves the logic of our prescription. We take a correlator of the

form (4.1) and construct all the possible Feynman diagrams. For each diagram we consider

a dual of its skeleton. This skeleton graph has the multiplicities of its edges as the metric

of those edges. Finally, due to Strebel theorem there is a unique quadratic differential

with this metric graph being its critical graph. Thus, in order to reproduce an s point

correlator restricted to genus g Riemann surface we will have to consider all the possible

Strebel differentials with integer edges on the genus g surface with s marked points, and

the residues of the poles being the parameters Ji. We will write an expression doing the

job for us and then comment on the nature of different terms. A correlator on surface of

genus g in a free matrix model is reproduced by the following toy σ-model

〈
s
∏

k=1

ÔJk〉g = N2−2g





∑

ϕ∈Sg,s

1

Γ(ϕ)









∏

k∈P (ϕ)

∫ 1

0
dXk



 e−2πi
P

k∈P (ϕ) Xkpk(ϕ)
s
∏

i=1

ÔJi . (4.4)

The set Sg,s is the set of Strebel differentials on a smooth genus g Riemann surface with all

the edges integer (possibly zero) valued and s double poles. P (ϕ) is the set of the double

poles of differential ϕ. We identify the operators as

TrQJ → ÔJ = N−1

⌈J
2
−1⌉
∑

h=0

(

J

h

)

(J − 2h)
∑

k∈P (ϕ)

e2πi(J−2h)Xk ≡
⌈J

2
−1⌉
∑

h=0

(

J

h

)

OJ−2h.

(4.5)

With these identifications we will reproduce exactly the free field theory result (only the

connected diagrams counted)

〈
s
∏

j=1

TrQJj〉g = 〈
s
∏

j=1

ÔJj〉g. (4.6)

Let us explain different quantities appearing above

• The integration over Xk is introduced to equate between the insertion parameter J

and the circumference of the differential at puncture k, pk(ϕ).

• Γ(ϕ) is a symmetry factor and is computed as follows. Note that each Feynman

diagram i defines several inequivalent metric graphs and thus is described by a number

of points on the moduli space.8 The inequivalent metric graphs are obtained by

assigning labels to the vertices and identifying graphs by mapping the set of vertices

8However, each metric graph corresponds to a unique Feynman diagram.
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A A C BA
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BA
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B

Figure 2: Depicted here are two examples of different metric graphs corresponding to the same

Feynman diagram. All the edges of the graphs are of length one. On the left we have two metric

graphs corresponding to the unique Feynman diagram contributing to 〈(TrQ)3 TrQ3〉 (ni = 2 and

#(Γi) = 3). On the right we have three metric graphs corresponding to the unique diagram of

〈(TrQ2)4〉 (ni = 3 and #(Γi) = 8).

and the set of edges onto themselves keeping the orientation of the vertices fixed.

We denote by ni the number of inequivalent metric graphs corresponding to a given

Feynman diagram. Thus, to reproduce the combinatorics of (4.3) we have to define

Γ(ϕ) = ni × #(Γi).

• The sum over Strebel differentials has to be further constrained in order to not over-

count contributions due to the CKVs. For instance, we have to take the sphere

Strebel differentials with three of the pole positions fixed to prescribed values.

• The binomial coefficients appearing in the operator mapping count homotopycally

trivial self contractions of the TrQJ operators.

• The sum over Strebel differentials can be heuristically decomposed as follows. Any

two differentials having same critical graphs but edges of which differ by a common

finite multiplicative factor correspond to the same location on the moduli spaceMg,s.

Thus, the sum over the set of Strebel differentials with integer lengths Sg,s decomposes

into a dense sum over the moduli space times a sum over N which encodes the over

all integer scale of the differential.9 Roughly speaking

∫ ′

Mg,s

∞
∑

k=1

←→
∑

Sg,s

. (4.7)

Here the prime over the integral denotes that the integration is really a dense sum-

mation.

In the following sections we will rewrite the above model in a language a bit more

familiar from the usual formulations of string theories.

9The exact claim here is as follows. Using the Strebel theorem one can define the natural projection

π : Sg,s → Mg,s. We observe that the set π(Sg,s) is dense in Mg,s. Moreover, π
−1(a ∈ π(Sg,s)) ∼ N, as

the moduli are given in terms of non-trivial functions of the ratios of the edge lengths, and it is unlikely

that two different sets of rational edge ratios will give same moduli. This statement is not exact and thus

the equation (4.7) should be understood accordingly.
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Figure 3: Two circles contracting to zero size in the left diagram to give a critical curve with two

simple poles.

4.2 Enlarging the set of differentials

In this section we will discuss a useful extension of the set of Strebel differentials Sg,s

defined in the previous section. As we will see in the following section this extension will

allow us to rewrite our toy σ-model in an (almost) conventional string theory language.

The extension we will introduce is basically to add to the set Sg,s differentials with

some of the circumferences exactly zero. There are no Strebel differentials with zero cir-

cumferences and thus we should extend the notion of these differentials to include such

objects. Essentially, the extension is straightforward. Note that we can add to the set

of Strebel differentials limits of differentials with one of the edges going to zero length.

Usually this procedure brings two zeros together and produces a zero (with a valence being

a sum of the valences of the two original zeros). However, if the edge encircles a double

pole (and has both ends ending on the same vertex) then a more interesting scenario can

happen. If the edge ends on a zero of valence greater than two the result of taking the

limit is a zero of smaller valence. If the zero is of valence two then the result of the limit

is a regular point. Thus, the above two limits produce well behaved Strebel differentials.

Finally, if the edge ends on a simple zero the result of the limit will be a simple pole and

the critical graph will have a single edge emanating from this point. A Strebel differential

can not have simple poles and thus we will have to add the above configuration to the

differentials we consider.10

Consider the following two simple examples of the differentials that the above procedure

produces. Consider the differential

q(z) dz2 = − 1

4π2

[

a

(

dz

z

)2

+ b

(

dz

z − 1

)2

+ c

(

dz

z(1− z)

)2
]

. (4.8)

For ab+ ac+ bc < 0 the critical curve of this differential looks as the left curve on figure 3.

10A discussion of quadratic differentials with simple poles appears also when considering compactifications

of moduli spaces. See for instance [31].
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By taking a = b = −c we obtain the following differential

q(z) dz2 = − a

2π2

1

z(z − 1)
dz2, (4.9)

and the critical curve is depicted on the right side of figure 3. A second simple example

is the case obtained by a different limit of the diagram depicted in 3. One can take one

of the circle edges to zero as well as the central edge. This is given by b = c = 0 and the

differential is simply

q(z)dz2 = − a

4π2

1

z2
. (4.10)

Note that introducing simple poles enables us to discuss homotopically trivial self

contractions on the same footing as all the other contractions. Thus we will make the

following definition of a set of differentials which will be of interest to us. We will denote

the set of the Strebel differentials with integer lengths on genus g surface with exactly

s double poles with non-vanishing circumferences and any number of double poles with

vanishing circumferences (in the sense discussed above) by Ŝg,s. This set extends Sg,s by

allowing differentials with simple poles.

Let us discuss two possible metrics one can put on the worldsheet using a Strebel

differential ϕ. One natural choice to define a metric is

ds2 = gzz̄dzdz̄ = |ϕ|dzdz̄. (4.11)

The curvature tensor of this metric is proportional to ∂∂̄|ϕ| and we can write

1

4π

√
gR = −1

2

∑

k

mkδ
2(z − zk, z̄ − z̄k), (4.12)

where zk’s are the positions of the poles and the zeros of the differential. The numbers mk

are the multiplicities of these points. That is for a double pole mk = −2, for a simple pole

mk = −1, for a regular point mk = 0 and for a zero of valence v we have mk = v. One can

check the combinatorics to obtain

1

4π

∫

d2z
√
gR = 2− 2g. (4.13)

Another choice of metric follows directly from the extension of the set of differentials dis-

cussed above. Recall how the Strebel differentials entered into the prescription of section 3.

These differentials had critical graphs equivalent to the dual graphs of the skeleton of a

given Feynman diagram. However, after extending the set of differentials above, it is sen-

sible now to associate for each Feynman diagram itself a differential, which we will denote

by ϕD. This differential will have the Feynman diagram itself (note, not the skeleton but

the diagram itself) as its critical graph. The existence and the uniqueness of such differen-

tial is guaranteed by the Strebel theorem and the construction above. In appendix B we

explicitly construct the dual ϕD for a given differential ϕ. The vertices of the critical graph
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of ϕ will become the faces of the critical graph of ϕD and vice versa. In the following table

the map between the special points of the two differentials is summarized,

ϕ ϕD

− p2

4π2
1
z2 zp−2

zm, m ≥ −1 − (m+2)2

4π2
1
z2

. (4.14)

Note that the double poles with circumference 2 of ϕ are mapped to regular points of ϕD

and some regular points of ϕ can be mapped to double poles of ϕD (for details consult

appendix B). In what follows when we will refer to a set of special points of a differential

(zeros and poles) we will always consider them as defined by the ϕD differential.

We can use the differential ϕD to define a metric

ds2 = (gD)zz̄dzdz̄ = |ϕD|dzdz̄. (4.15)

The curvature computed in this metric has the following form

1

4π

√
gDRD = −1

2

∑

k

(pk − 2)δ2(z − z′k, z̄ − z̄′k), (4.16)

where z′k are the zeros, simple and double poles of ϕD. In the above equation the parameters

pk are defined by the differential ϕ and in particular the circumference of a zero (or a simple

pole) of ϕ is defined to vanish.

4.3 Constructing a worldsheet model

We are now in position to rewrite our toy σ-model in a more familiar way. Our action (4.4)

and the definition of operators (4.5) appear as discrete sums over special points on the

worldsheet. However, using Strebel differentials we can write these as integrals over the

worldsheet.

First we claim that the following model is equivalent to the one defined in section 4.1.

The correlators in the model are computed using the following expression

〈
s
∏

k=1

OJk〉g =







∑

ϕ∈Ŝ′
g,s

1

Γ(ϕ)











∏

k∈Z(ϕD)∪P (ϕD)

∫ 1

0
dXk



 eS
s
∏

k=1

OJk . (4.17)

The action is given by

S ≡ −2πi
∑

k∈Z(ϕD)∪P (ϕD)

[pk(ϕ)− 2]Xk + µ
∑

k∈P (ϕD)

e−4πiXk , (4.18)

and we identify the operators as

TrQJ → OJ = N−J/2J
∑

k∈Z(ϕD)

e2πi(J−2)Xk . (4.19)
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The set P (ϕD) is the set of the double poles, and Z(ϕD) is the set of simple poles and

zeros of the ϕD differential. The parameter µ will be shortly identified. We see that with

the above identification of the operators TrQ2 is problematic. Thus, we will remove this

operator from the theory and restrict the set Ŝg,s to differentials with no double poles of

circumference two. This set is denoted by Ŝ ′
g,s in equation (4.17). We will comment on the

interpretation of the TrQ2 operator at the end of this section.

The equivalence of (4.17) and (4.4) can be easily established. Note that the integration

over Xk for k ∈ Z(ϕD) sets pk = Jk exactly as one obtains in the model of section 4.1.

Further, the existence of homotopically trivial self-contractions is dealt with by allowing

simple poles. Note that a simple pole of the differential ϕ implies that the corresponding

Feynman diagram has a homotopically trivial self-contraction, and thus summing over all

possibilities to have simple poles counts all the different ways to introduce this class of self

contractions. The integration over Xk for k ∈ P (ϕD) gives simply an overall factor of µf ,

where f is the number of faces of the Feynman diagram (which is equal to the number of

the double poles of ϕD). The overall µ and N dependence of the correlator is

N− 1
2

Ps
k=1 Jkµf = N2−2g−s

( µ

N

)f
. (4.20)

Thus, by setting µ = N the model (4.17) is equivalent to the model (4.4) and thus to the

Gaussian matrix model.

The reason why we introduce a slightly modified version of our original simple model

is that now we can naturally rewrite it in terms of real worldsheet fields. Using the results

of the previous subsection we can write the X dependent part of the action as ( denote

H = Z(ϕD) ∪ P (ϕD) )

− 2πi
∑

k∈H

[pk(ϕ)− 2] Xk = −2πi

∫

d2z
∑

k∈H

(pk − 2)δ2(z − zk, z̄ − z̄k)X(z, z̄),

= i

∫

d2z
√
gDRDX(z, z̄). (4.21)

Here X(z, z̄) is a function on the Riemann surface satisfying

X(zk, z̄k) = Xk. (4.22)

In order to define more concretely how to lift the set of Xks to a field on the worldsheet we

will have to define the functional integration measure of this field. To do so we first write

the vertex operators as functions of this field

TrQJ → OJ = N−J/2

∫

d2z fJ(g, gD) e2πi(J−2)X(z,z̄).

Here fJ(g, gD) is a yet undetermined function of the metrics. Next we denote the ap-

propriate measure for the field X by [D̂X]gD . The functions fJ and the definition of the

measure should conspire so that the functional integration will reproduce the discrete in-

tegrations of (4.17). There is a considerable amount of freedom of how to define these
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quantities. However, one can show (the technical details can be found in appendix C) that

the following choice can be made. One can define

fJ>0(g, gD) = CJ
√
g, (4.23)

where CJ ’s are normalization factors (see appendix C). With this choice the discrete theory

is reproduced by the following functional integration

[D̂X]gD = ∆gD [DX]gD e
−π

R

d2z ∂X∂̄X , (4.24)

where ∆gD =
√

det ∂∂̄ and [DX]gD is the standard measure for a periodic scalar.

Further, the µ dependent part of the action can be written as µ̂O0 where

O0 =

∫

d2z
√
gD e

−4πiX(z,z̄), (4.25)

and we will refer to this operator as the “puncture” operator. The parameter µ̂ is defined

as

µ̂ ≡ C0 µ. (4.26)

Here C0 is a normalization constant (see appendix C). Note that the definition of the

functions fJ for the puncture operator and for the other operators is different. The technical

reason for this, as explained in appendix C, is the fact that the puncture operator has to

be inserted on the faces of the Feynman diagram and the other operators are inserted at

the vertices of the diagram.

Let us summarize our results. The correlators (only connected diagrams counted) of

the Gaussian matrix theory are reproduced by the following model. The correlators are

given by

〈
s
∏

k=1

OJk〉g =
∑

ϕ∈Ŝ′
g,s

∆gD

Γ(ϕ)

∫

[DX]gD e
−SX(µ̂)

s
∏

k=1

OJk . (4.27)

The action is

SX(µ̂) = π

∫

d2z∂X∂̄X − i
∫

d2z
√
gD RD X − µ̂

∫

d2z
√
gDe

−4πiX , (4.28)

and the operators are

O0 =

∫

d2z
√
gD e

−4πiX(z,z̄) OJ 6=0,2 = N−J/2 CJ

∫

d2z
√
g e2πi(J−2)X(z,z̄) .

(4.29)

Note that the above theory bares some resemblance to the Itzhaki-McGreevy string

theory [42]. In particular it is tempting to identify −2πX with the time-like Liouville field

of that model (which has c = 25).
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To actually prove that the model (4.27) is equivalent to some kind of string theory we

have to understand better the measure on the moduli space. The measure on the moduli

space is unconventional and is given by

∑

Ŝ′
g,s

∆gD

Γ(ϕ)
. (4.30)

We did not start by defining our model as an integral over metrics, but it is plausible to

guess that the above measure should consist of the integration over the usual moduli space

of Riemann surfaces together with some ghost system and an additional matter field(s). It

is very interesting to establish whether these can be formulated in terms of a conventional

bc ghost system and a c = 1 matter field, which should be the real Liouville mode in this

model, the one coming from the broken Weyl invariance. A remnant of this Liouville field

can be seen in (4.7) in terms of a discrete rescaling of the Strebel differentials and thus

also a rescaling of the g metric. In this context, let us comment on the nature of the TrQ2

operator. The fact that we fail to describe this operator on the worldsheet is yet another

sign for the need to introduce additional structure to the model. It might be the case

that the O2 operator should be defined in terms of the additional worldsheet fields and be

independent of the field X. We leave the investigation of these issues to future research.

5. Discussion

In this paper we have introduced a prescription for constructing worldsheet duals of free

field theories. This prescription is a variant of the prescription suggested by R. Gopaku-

mar [19]. Using this prescription we have constructed an unconventional worldsheet dual

of the free matrix model.

There are many questions which deserve further investigation. First of all, the main

issue left open is a better understanding of the moduli space measure. In particular one can

wonder whether a string theory in an unconventional gauge might give the measure (4.30).

Making sense of the measure on the moduli space is crucial for making any connection with

the familiar formulations of string theories.

Another important direction for further research is to generalize the discussion in

section 4 to higher dimensions and to theories with multiple fields. The similarity of

our model to the Itzhaki-McGreevy string, which was proposed in [42] as a worldsheet

dual of the quantum mechanics of a gauged matrix harmonic oscillator,11 suggests that a

better understanding of the moduli space measure might shed some light on the D = 1

case. Essentially, it is tempting to conjecture that the unconventional worldsheet dual of

the Gaussian matrix model obtained in section 4 is really computing a certain class of

harmonic oscillator expectation values, and the full string theory extension of this model

is the dual string theory of the harmonic oscillator quantum mechanics.

There are at least two new issues with going to D ≥ 2. First, the propagators are not

trivial any more, i.e. they depend on the space-time coordinates xµ. One can try and use

11See also [43] for a discussion of harmonic oscillator quantum mechanics in the context of gauge/gravity

duality.
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the Fourier tricks of section 4 to deal with this complication. That is, we can introduce

additional D fields Yµ on the worldsheet. For each point of Sg,s the action for these fields

can be defined as a Fourier transform of the corresponding Feynman diagram. The vertex

operators thus will include an additional exponential exp(−ixµ Y
µ(zk, z̄k)). The challenge

then is to write a continuous (and local) action on the worldsheet for the fields Yµ.

Another important new issue with going to D ≥ 2 is the absence of self-contractions

in these theories. As the position space propagators diverge when the separation is taken

to zero, we have to remove all the self contractions with some kind of normal ordering

procedure. Removing self contractions implies that we will have less Feynman diagrams

and cover less points on the moduli space. Essentially, the self contractions can be divided

into two classes, homotopically trivial and non trivial ones. We saw in section 4.3 that

the homotopically trivial self contractions can be naturally taken into account by the

puncture operator. Thus, taking away this class of self contractions will probably amount

to reconsidering the puncture operator. Taking away the homotopically non trivial self

contractions has a more geometric meaning. For instance, the points contributing to any

two point correlator on the torus will localize on a submanifold of Mg=1,2 exactly as it

happens in Gopakumar’s prescription [21]. It will be very interesting to understand better

the role played by self contractions in this type of constructions.
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A. A short primer on Strebel differentials

A quadratic differential is the following object,

q = ϕ(z) dz2, (A.1)

where ϕ is a meromorphic function on a given Riemann surface. This differential is defined

to have the following property under a holomorphic reparametrization of the worldsheet

z → z′(z),

ϕ(z)dz2 = ϕ′(z′)(dz′)2. (A.2)

Using quadratic differentials one can define a length for a line element through

dl =
√
ϕdz. (A.3)

Note that this length is in general a complex number. It is useful to define the notions

of horizontal and vertical curves of the differential. Given a curve γ(t) on the Riemann
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Figure 4: Behavior of the horizontal curves of a quadratic differentials in the vicinity of different

points. From left to right we have a double pole (with a negative coefficient), a simple pole, a

regular point and a simple zero.

surface we say that it is horizontal if

ϕ(γ(t))

(

dγ

dt

)2

> 0, (A.4)

and vertical if the opposite inequality holds. Note that the length of the horizontal curves

computed using (A.3) is real. By convention we will discuss the horizontal curves in what

follows. A horizontal curve can either be closed or end on a zero or a pole. The set of

all non-closed horizontal curves of a quadratic differential is called the critical curve of the

differential. We restrict to quadratic differentials critical curve of which is compact.

If a quadratic differential has at most double poles (with negative coefficients) then the

critical curve divides the Riemann surface into ring domains. The vertices of the critical

curve of such a differential are the zeros and the simple poles of the differential. The

following theorem due to K. Strebel holds,

Given a Riemann surface with s marked points and s positive numbers pk associated to

those points, there is a unique quadratic differential with double poles as its only singular-

ities such that:

• It has exactly s double poles located at the marked points

• The residues of the double poles are the numbers pk

• The Riemann surface is a union of s disc domains defined by the marked points.

We refer to a differential which satisfies the properties above as a Strebel differential.

Note that from this theorem follows that there is a unique Strebel differential for each

point of Mg,s × R
s
+. Further, this also gives us a natural isomorphism between the space

Mg,s × R
s
+ and the space of metric graphs with s faces on genus g surface.12 For each

point ofMg,s×R
s
+ we associate the critical curve of the corresponding Strebel differential

as the metric graph (metric on the graph defined through (A.3)), and the other direction

of the isomorphism can be also (less trivially) established.

12In this context we define a metric graph as a connected graph with a positive real number associated

to every edge and all the vertices at least trivalent.
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Figure 5: On the left we have an example of a Strebel differential on a sphere. It has four double

poles located at z = 0, 1,∞ and z = 1

2
. We see that the sphere is decomposed into four disc

domains. On the right we have a differential which is not Strebel. It differs from the left one by

taking the fourth insertion from z = 1

2
to z = 1

2
+ 0.4 i. Note that now we have one additional ring

domain. When one will compute the distance between the two zeros of the differential (the two

vertices of the critical curve) it will be a complex number.

When explicitly trying to find a Strebel differential for a given Riemann surface and

a given set of residues the first two conditions above can be easily satisfied. The third

condition is however a very non-trivial one. Essentially, it can be rephrased as the demand

that all the distances between the zeros of the differential computed in Strebel metric (A.3)

should be real. Computing these distances will give constraints on the parameters of the

differential. Usually these constraints will be expressed through elliptic integrals, which

are difficult to solve. In figure 5 an example of a Strebel differential is depicted.

B. The dual Strebel differential ϕD

Given a Strebel differential ϕ ∈ Ŝg,s consider the following quadratic differential

ϕD dz2 ≡ 4ϕe2πi l(z)

(

1− e2πi l(z)
)2 dz

2 = − 1

π2

(

d

[

ln
1 + eπil(z)

1− eπil(z)

])2

, (B.1)

where we have defined

l(z) ≡
∫ z

z′
dz
√
ϕ, (B.2)

and z′ is one of the zeros of the differential ϕ. Note that ϕD has correct properties under

coordinate transformations. The differential is well defined because all the edges of ϕ are

integer (and this also implies that ϕD has the same periodicity properties as ϕ). Let us

consider the behavior of ϕD near special points of ϕ. First, near a double pole za of ϕ we

have

ϕ(z → za) ∼ −
p2

a

4π2

1

(z − za)2
. (B.3)
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Using this we obtain

e2πi l(z) ∝ e−pa
R z dz

z−za = (z − za)−pa. (B.4)

The above implies for ϕD that

ϕD ∝
(z − za)−2(z − za)−pa

(z − za)−2pa
= (z − za)pa−2. (B.5)

Thus the differential ϕD has a zero of valence pa − 2 where the differential ϕ has a double

pole with circumference pa. Consider now a zero zb of valence mb of the differential ϕ.

Near the zero we have

ϕ(z → zb) = Ab (z − zb)mb +O((z − zb)mb+1), (B.6)

where Ab is some constant. Remember that all the edges of differential ϕ have integer

lengths by assumption and thus

e2πi l(z) = 1− 2πi
√

Ab
2

mb + 2
(z − zb)mb/2+1 +O((z − zb)mb/2+2). (B.7)

Thus we obtain for the differential ϕD

ϕD ∼
4Ab (z − zb)mb

(

1− (1− 2πi
√
Ab

2
mb+2 (z − zb)mb/2+1)

)2 = −(mb + 2)2

4π2

1

(z − zb)2
. (B.8)

Thus we conclude that at the positions of the zeros of ϕ with valence m the differential ϕD

has double poles of circumference m + 2. Moreover, at the regular points on the critical

curve of ϕ having integer distance from z′ the same argument as above implies that the

differential ϕD has a double pole with circumference 2. The differential ϕD has no other

poles or zeros. We have shown that the differential ϕD satisfies all the properties of the

dual quadratic differential from section 4.2, and we just have to prove that it also is a

Strebel differential.

In order to prove that the ϕD differential is Strebel we have to show that all the

distances between the zeros of ϕD are real. Essentially, we have to prove that the following

integrals are real

lD(za) ≡
∫ za

z̃′
dz
√
ϕD ∈ R, (B.9)

where z̃′ and za are zeros (or simple poles) of ϕD and thus double poles of ϕ by construction.

Using the fact that l(z → za) → i ln(z − za), and (B.1) we obtain

lD(za) =
1

πi

(

ln
[

1 + eπil
]

− ln
[

1− eπil
])∣

∣

∣

l(za)

l(z̃′)
∈ Z. (B.10)

Thus we have shown that ϕD is a valid Strebel differential with integer edge lengths. The

critical curve of ϕD is the Feynman diagram, the skeleton graph of which is dual to the
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Figure 6: Depicted here are two examples of the critical curves of differentials along with their

duals. On the left, the dashed line corresponds to the Feynman diagram (corresponding to the dual

differential ϕD in our notations) of 〈
(

TrQ2
)4〉. The insertions are at z = 0, 1, i, 1

5
(2 − i). This is

a very simple example as ϕD has no zeros or simple poles at all and as its critical curve we draw

a closed horizontal leaf passing through the poles of ϕ. On the right, the curves corresponding to

the differentials of 〈TrQTrQTrQ4〉 are depicted. The insertions are at 0, 1, and ∞. The lines of

the dual curve (the dashed lines) meet at z =∞, where ϕD has a double zero.

critical curve of ϕ. Finally, using (B.10) one can show that the dual differential of ϕD

(ϕDD) is ϕ,

ϕDD =
4ϕD e2πi lD(z)

(

1− e2πi lD(z)
)2 =

16ϕe2πi l

(1− e2πi l)
2

[

1 + eπil

1− eπil

]2
1

(

1−
[

1+eπil

1−eπil

]2
)2 = ϕ. (B.11)

As a simple example of the above we consider the following differential (℘(z|τ) is the

Weierstrass elliptic function13)

ϕ(z) = − 4

π2
℘(z|τ = i). (B.12)

We regard this differential as a Strebel differential on a torus with τ = 2i. This differential

has two double poles of circumference four and two double zeros in the fundamental domain.

We use (B.1) to find the dual differential

l(z) =
1

π
arcsin℘(z|τ = i) → ϕD(z) =

4

π2

1

℘(z|τ = i)
= − 4

π2
℘

(

z − 1 + i

2
|τ = i

)

. (B.13)

Several additional examples of differentials along with their duals are depicted in figures 6

and 7.

C. Measure details

On a given Riemann surface with a (dual Strebel) metric gD we define a complete set of

13See for instance [21] for examples of Strebel differentials on a torus.
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Figure 7: Depicted here are the two diagrams contributing to 〈TrQ4TrQ4〉g=1. On the left, we

have a diagram without self contractions (the fundamental domain of the torus is depicted). This

diagram gets a single contribution from the point in moduli space with insertions at z = 0, i+1

2

and with the torus modulus τ = i. On the right is the diagram with self contractions. Here the

insertions are at z = 0 and z = i with the torus modulus τ = 2i. The dashed lines correspond to

the horizontal leaves of ϕD and the solid lines to horizontal leaves of ϕ.

functions

∂∂̄ψn = −√gDǫnψn,

∫

d2z
√
gDψnψm = δn,m, (C.1)

√
gD

∑

n

ψn(z)ψn(z′) = δ(2)(z − z′).

Given a function on a Riemann surface we make the following expansion

X(z, z̄) =
∑

n

anψn, (C.2)

The zero mode a0 encodes the fact that the scalar is periodic and takes values in the interval

[0, 1]. The standard path integral measure for a scalar field X is given by

[DX]gD =
∏

n

dan. (C.3)

We want to show that the following path integral measure for the X field can be chosen

(∆gD =
√

det ∂∂̄)

[D̂X]gD = ∆gD [DX]gD e
−π

R

d2z ∂X∂̄X . (C.4)

We have to check that with this definition of the measure the results of (4.17) are repro-

duced. Let us compute the following quantity (denote H ≡ Z(ϕD) ∪ P (ϕD)),

I ≡
∫

[D̂X]gDe
−2πi

P

k∈H PkX(z′
k
)

s+m
∏

q=1

∫

d2zq fJq+2(g, gD) e2πiJqX(zq) (C.5)

= ∆gD

s+m
∏

q=1

∫

d2zq fJq+2(g, gD)

∫

[DX]gD e
−π

R

d2z ∂X∂̄X e−2πi[
P

k∈H PkX(z′
k
)−

Ps+m
q=1 JqX(zq)].
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Here m is the number of puncture operators and s is the number of all the other operators.

In order for the continuous and the discrete definitions of the model to agree the above

has to be a sum of products of Kronecker δ-functions equating the elements of the set of

{Pk} to the elements of the set {Jk}. Note also that the X path integral above looks very

similar to a standard correlator of tachyons in bosonic string theory. The difference is that

here the metric (the Strebel metric gD) is singular with some of the insertions sitting at

the singularities (z′ks). In the standard string theory the above path integral is regularized

by normal ordering the operators. However, because some of the operators are inserted at

the singularities of the metric this regularization is not effective in our case and we will

employ a slightly different one. Thus, let us evaluate (C.5) directly using (C.1) and (C.3)

I =

∫





s+m
∏

q=1

d2zq



 fJq+2(g, gD) e−π
P

n

[
P

H Pkψn(z′
k
)−

Ps+m
q=1

Jqψn(zq)]
2

ǫn . (C.6)

Note that the exponential appearing in the integrand is almost always zero. This follows

from the fact that G(z, z′) =
∑

n
1
ǫn
ψn(z)ψn(z′) is the Green’s function on the Riemann

surface and it logarithmically diverges when z → z′. The only way for the integrand not

to vanish is if

∀n →
∑

H

Pkψn(z′k)−
s+m
∑

q=1

Jqψn(zq) = 0. (C.7)

Further we will assume that fJ(g, gD) diverges at the positions of the poles of ϕD for J

corresponding to the puncture operator (J = 0). A natural (and diff invariant) way to

satisfy this assumption is to take f0 ∼ √gD. We also assume that fJ>0 diverges at the

positions of the zeros of ϕD. The natural choice satisfying this is to take fJ>0 ∼
√
g. Note

(see appendix B) that the poles of the metric g and the zeros of gD are located at the same

positions on the worldsheet. Assuming the above (and remembering that the number of

zeros and simple poles of ϕD is equal to s) the integrand will not vanish only if the set

{Pk} can be element by element equated to the set {Jk} and the set {z′k} to be accordingly

equated to the set {zq}. Thus, we conclude that the integrand of I will be proportional to

a sum of products of Kronecker δ-functions.

In order to obtain a finite result for I we have to regularize the integrals in (C.6). For

instance, we can restrict to a finite number of ψn and then the exponential in the integrand

will be smeared. We can regulate the metrics by cutting small holes around the poles. The

exact prescription for the regularization will be encoded in the over-all normalization of

the vertex operators. Thus finally, we will define the operators as

Õ0 = C0

∫

d2z
√
gDe

−4πiX , (C.8)

OJ>0 = CJ

∫

d2z
√
g e2πi(J−2)X .

The constants CJ and C0 are the normalization constants and their value depends on the

explicit regularization procedure used.
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